Viscoelastic properties of chondrocytes from normal and osteoarthritic human cartilage.

نویسندگان

  • W R Trickey
  • G M Lee
  • F Guilak
چکیده

The deformation behavior and mechanical properties of articular chondrocytes are believed to play an important role in their response to mechanical loading of the extracellular matrix. This study utilized the micropipette aspiration test to measure the viscoelastic properties of chondrocytes isolated from macroscopically normal or end-stage osteoarthritic cartilage. A three-parameter standard linear solid was used to model the viscoelastic behavior of the cells. Significant differences were found between the mechanical properties of chondrocytes isolated from normal and osteoarthritic cartilage. Specifically, osteoarthritic chondrocytes exhibited a significantly higher equilibrium modulus (0.33 +/- 0.23 compared with 0.24 +/- 0.11 kPa), instantaneous modulus (0.63 +/- 0.51 compared with 0.41 +/- 0.17 kPa), and apparent viscosity (5.8 +/- 6.5 compared with 3.0 +/- 1.8 kPa-s) compared with chondrocytes isolated from macroscopically normal, nonosteoarthritic cartilage. The elastic moduli and relaxation time constant determined experimentally in this study were used to estimate the apparent biphasic properties of the chondrocyte on the basis of the equation for the gel relaxation time of a biphasic material. The differences in viscoelastic properties may reflect alterations in the structure and composition of the chondrocyte cytoskeleton that have previously been associated with osteoarthritic cartilage. Coupled with earlier theoretical models of cell-matrix interactions in articular cartilage, the increased elastic and viscous properties suggest that the mechanical environment of the chondrocyte may be altered in osteoarthritic cartilage.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Evaluation of CD98 Expression in Normal and Osteoarthritic Human Articular Chondrocytes

Background: Recent studies have provided evidence that integrins play roles in recognition of mechanical stimuli and its translation into a cellular response. Integrin signaling may be regulated by a number of mechanisms including accessory proteins such as CD98 (4F2 antigen). Objectives: To determine CD98 expression by human articular chondrocytes and its involvement in human articular mechano...

متن کامل

CD147 (Extracellular Matrix Metalloproteinase Inducer-EMMPRIN) Expression by Human Articular Chondrocytes

Background: Integrins are a family of transmembrane proteins that allow communication between the extracellular matrix and the interior of cells. Chondrocytes, cells of articular cartilage, express integrins and these molecules appear to have a variety of roles including mechanotransduction. Integrins are known to associate with a number of accessory molecules such as CD147 that may act to regu...

متن کامل

The Expression of Signal Regulatory Protein-alpha in Normal and Osteoarthritic Human Articular Cartilage and Its Involvement in Chondrocyte Mechano-transduction Response

Signal regulatory proteins (SIRP) belong to immunoglobulin super family (IgSF) and relate to integrin signaling cascades. It has been shown that SIRPa is expressed in a variety of cells including myeloid cells and neurons. In the present study the expression of this IgSF member in articular chondrocytes was investigated. Methods: Using a panel of anti-SIRPalpha antibodies, immunohistochemistry...

متن کامل

The role of the cytoskeleton in the viscoelastic properties of human articular chondrocytes.

Biomechanical factors are believed to play an important role in regulating the metabolic activity of chondrocytes in articular cartilage. Previous studies suggest that cytoskeletal proteins such as actin, vimentin, and tubulin influence cellular mechanical properties, and may therefore influence the mechanical interactions between the chondrocyte and the surrounding tissue matrix. In this study...

متن کامل

Biomechanical properties and mechanobiology of the articular chondrocyte.

To withstand physiological loading over a lifetime, human synovial joints are covered and protected by articular cartilage, a layer of low-friction, load-bearing tissue. The unique mechanical function of articular cartilage largely depends on the composition and structural integrity of the cartilage matrix. The matrix is produced by highly specialized resident cells called chondrocytes. Under p...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of orthopaedic research : official publication of the Orthopaedic Research Society

دوره 18 6  شماره 

صفحات  -

تاریخ انتشار 2000